[openssl-commits] [openssl] OpenSSL_1_0_1-stable update
Rich Salz
rsalz at openssl.org
Tue Jan 27 21:36:33 UTC 2015
The branch OpenSSL_1_0_1-stable has been updated
via 324a9774928c362083ab581cbc9052ac0b787283 (commit)
via 69aeb99f3277e97754a98285f8b92cf54dafd256 (commit)
from 53e652ae447fd4eafb7763ca6e1d1254609af206 (commit)
- Log -----------------------------------------------------------------
commit 324a9774928c362083ab581cbc9052ac0b787283
Author: Viktor Dkhovni <viktor at openssl.org>
Date: Fri Jan 23 15:39:40 2015 -0500
Replace exit() with error return.
Reviewed-by: Tim Hudson <tjh at openssl.org>
commit 69aeb99f3277e97754a98285f8b92cf54dafd256
Author: Rich Salz <rsalz at openssl.org>
Date: Tue Jan 27 16:35:55 2015 -0500
Revert "Remove engine_rsax and its asm file."
This reverts commit 5226c62b7632dfaf38480919d406307318a7d145.
Reviewed-by: Andy Polyakov <appro at openssl.org>
-----------------------------------------------------------------------
Summary of changes:
Configure | 2 +-
crypto/bn/Makefile | 2 +
crypto/bn/asm/modexp512-x86_64.pl | 1497 +++++++++++++++++++++++++++++++++++++
crypto/engine/Makefile | 18 +-
crypto/engine/eng_all.c | 3 +
crypto/engine/eng_rsax.c | 701 +++++++++++++++++
6 files changed, 2220 insertions(+), 3 deletions(-)
create mode 100644 crypto/bn/asm/modexp512-x86_64.pl
create mode 100644 crypto/engine/eng_rsax.c
diff --git a/Configure b/Configure
index 02161d8..541be9e 100755
--- a/Configure
+++ b/Configure
@@ -128,7 +128,7 @@ my $x86_asm="x86cpuid.o:bn-586.o co-586.o x86-mont.o x86-gf2m.o:des-586.o crypt5
my $x86_elf_asm="$x86_asm:elf";
-my $x86_64_asm="x86_64cpuid.o:x86_64-gcc.o x86_64-mont.o x86_64-mont5.o x86_64-gf2m.o::aes-x86_64.o vpaes-x86_64.o bsaes-x86_64.o aesni-x86_64.o aesni-sha1-x86_64.o::md5-x86_64.o:sha1-x86_64.o sha256-x86_64.o sha512-x86_64.o::rc4-x86_64.o rc4-md5-x86_64.o:::wp-x86_64.o:cmll-x86_64.o cmll_misc.o:ghash-x86_64.o:";
+my $x86_64_asm="x86_64cpuid.o:x86_64-gcc.o x86_64-mont.o x86_64-mont5.o x86_64-gf2m.o modexp512-x86_64.o::aes-x86_64.o vpaes-x86_64.o bsaes-x86_64.o aesni-x86_64.o aesni-sha1-x86_64.o::md5-x86_64.o:sha1-x86_64.o sha256-x86_64.o sha512-x86_64.o::rc4-x86_64.o rc4-md5-x86_64.o:::wp-x86_64.o:cmll-x86_64.o cmll_misc.o:ghash-x86_64.o:";
my $ia64_asm="ia64cpuid.o:bn-ia64.o ia64-mont.o::aes_core.o aes_cbc.o aes-ia64.o::md5-ia64.o:sha1-ia64.o sha256-ia64.o sha512-ia64.o::rc4-ia64.o rc4_skey.o:::::ghash-ia64.o::void";
my $sparcv9_asm="sparcv9cap.o sparccpuid.o:bn-sparcv9.o sparcv9-mont.o sparcv9a-mont.o:des_enc-sparc.o fcrypt_b.o:aes_core.o aes_cbc.o aes-sparcv9.o:::sha1-sparcv9.o sha256-sparcv9.o sha512-sparcv9.o:::::::ghash-sparcv9.o::void";
my $sparcv8_asm=":sparcv8.o:des_enc-sparc.o fcrypt_b.o:::::::::::::void";
diff --git a/crypto/bn/Makefile b/crypto/bn/Makefile
index e1452b3..6dd136b 100644
--- a/crypto/bn/Makefile
+++ b/crypto/bn/Makefile
@@ -102,6 +102,8 @@ x86_64-mont5.s: asm/x86_64-mont5.pl
$(PERL) asm/x86_64-mont5.pl $(PERLASM_SCHEME) > $@
x86_64-gf2m.s: asm/x86_64-gf2m.pl
$(PERL) asm/x86_64-gf2m.pl $(PERLASM_SCHEME) > $@
+modexp512-x86_64.s: asm/modexp512-x86_64.pl
+ $(PERL) asm/modexp512-x86_64.pl $(PERLASM_SCHEME) > $@
bn-ia64.s: asm/ia64.S
$(CC) $(CFLAGS) -E asm/ia64.S > $@
diff --git a/crypto/bn/asm/modexp512-x86_64.pl b/crypto/bn/asm/modexp512-x86_64.pl
new file mode 100644
index 0000000..bfd6e97
--- /dev/null
+++ b/crypto/bn/asm/modexp512-x86_64.pl
@@ -0,0 +1,1497 @@
+#!/usr/bin/env perl
+#
+# Copyright (c) 2010-2011 Intel Corp.
+# Author: Vinodh.Gopal at intel.com
+# Jim Guilford
+# Erdinc.Ozturk at intel.com
+# Maxim.Perminov at intel.com
+#
+# More information about algorithm used can be found at:
+# http://www.cse.buffalo.edu/srds2009/escs2009_submission_Gopal.pdf
+#
+# ====================================================================
+# Copyright (c) 2011 The OpenSSL Project. All rights reserved.
+#
+# Redistribution and use in source and binary forms, with or without
+# modification, are permitted provided that the following conditions
+# are met:
+#
+# 1. Redistributions of source code must retain the above copyright
+# notice, this list of conditions and the following disclaimer.
+#
+# 2. Redistributions in binary form must reproduce the above copyright
+# notice, this list of conditions and the following disclaimer in
+# the documentation and/or other materials provided with the
+# distribution.
+#
+# 3. All advertising materials mentioning features or use of this
+# software must display the following acknowledgment:
+# "This product includes software developed by the OpenSSL Project
+# for use in the OpenSSL Toolkit. (http://www.OpenSSL.org/)"
+#
+# 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
+# endorse or promote products derived from this software without
+# prior written permission. For written permission, please contact
+# licensing at OpenSSL.org.
+#
+# 5. Products derived from this software may not be called "OpenSSL"
+# nor may "OpenSSL" appear in their names without prior written
+# permission of the OpenSSL Project.
+#
+# 6. Redistributions of any form whatsoever must retain the following
+# acknowledgment:
+# "This product includes software developed by the OpenSSL Project
+# for use in the OpenSSL Toolkit (http://www.OpenSSL.org/)"
+#
+# THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
+# EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
+# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
+# PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
+# ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
+# SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
+# NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
+# LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
+# HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
+# STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
+# ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
+# OF THE POSSIBILITY OF SUCH DAMAGE.
+# ====================================================================
+
+$flavour = shift;
+$output = shift;
+if ($flavour =~ /\./) { $output = $flavour; undef $flavour; }
+
+my $win64=0; $win64=1 if ($flavour =~ /[nm]asm|mingw64/ || $output =~ /\.asm$/);
+
+$0 =~ m/(.*[\/\\])[^\/\\]+$/; $dir=$1;
+( $xlate="${dir}x86_64-xlate.pl" and -f $xlate ) or
+( $xlate="${dir}../../perlasm/x86_64-xlate.pl" and -f $xlate) or
+die "can't locate x86_64-xlate.pl";
+
+open OUT,"| \"$^X\" $xlate $flavour $output";
+*STDOUT=*OUT;
+
+use strict;
+my $code=".text\n\n";
+my $m=0;
+
+#
+# Define x512 macros
+#
+
+#MULSTEP_512_ADD MACRO x7, x6, x5, x4, x3, x2, x1, x0, dst, src1, src2, add_src, tmp1, tmp2
+#
+# uses rax, rdx, and args
+sub MULSTEP_512_ADD
+{
+ my ($x, $DST, $SRC2, $ASRC, $OP, $TMP)=@_;
+ my @X=@$x; # make a copy
+$code.=<<___;
+ mov (+8*0)($SRC2), %rax
+ mul $OP # rdx:rax = %OP * [0]
+ mov ($ASRC), $X[0]
+ add %rax, $X[0]
+ adc \$0, %rdx
+ mov $X[0], $DST
+___
+for(my $i=1;$i<8;$i++) {
+$code.=<<___;
+ mov %rdx, $TMP
+
+ mov (+8*$i)($SRC2), %rax
+ mul $OP # rdx:rax = %OP * [$i]
+ mov (+8*$i)($ASRC), $X[$i]
+ add %rax, $X[$i]
+ adc \$0, %rdx
+ add $TMP, $X[$i]
+ adc \$0, %rdx
+___
+}
+$code.=<<___;
+ mov %rdx, $X[0]
+___
+}
+
+#MULSTEP_512 MACRO x7, x6, x5, x4, x3, x2, x1, x0, dst, src2, src1_val, tmp
+#
+# uses rax, rdx, and args
+sub MULSTEP_512
+{
+ my ($x, $DST, $SRC2, $OP, $TMP)=@_;
+ my @X=@$x; # make a copy
+$code.=<<___;
+ mov (+8*0)($SRC2), %rax
+ mul $OP # rdx:rax = %OP * [0]
+ add %rax, $X[0]
+ adc \$0, %rdx
+ mov $X[0], $DST
+___
+for(my $i=1;$i<8;$i++) {
+$code.=<<___;
+ mov %rdx, $TMP
+
+ mov (+8*$i)($SRC2), %rax
+ mul $OP # rdx:rax = %OP * [$i]
+ add %rax, $X[$i]
+ adc \$0, %rdx
+ add $TMP, $X[$i]
+ adc \$0, %rdx
+___
+}
+$code.=<<___;
+ mov %rdx, $X[0]
+___
+}
+
+#
+# Swizzle Macros
+#
+
+# macro to copy data from flat space to swizzled table
+#MACRO swizzle pDst, pSrc, tmp1, tmp2
+# pDst and pSrc are modified
+sub swizzle
+{
+ my ($pDst, $pSrc, $cnt, $d0)=@_;
+$code.=<<___;
+ mov \$8, $cnt
+loop_$m:
+ mov ($pSrc), $d0
+ mov $d0#w, ($pDst)
+ shr \$16, $d0
+ mov $d0#w, (+64*1)($pDst)
+ shr \$16, $d0
+ mov $d0#w, (+64*2)($pDst)
+ shr \$16, $d0
+ mov $d0#w, (+64*3)($pDst)
+ lea 8($pSrc), $pSrc
+ lea 64*4($pDst), $pDst
+ dec $cnt
+ jnz loop_$m
+___
+
+ $m++;
+}
+
+# macro to copy data from swizzled table to flat space
+#MACRO unswizzle pDst, pSrc, tmp*3
+sub unswizzle
+{
+ my ($pDst, $pSrc, $cnt, $d0, $d1)=@_;
+$code.=<<___;
+ mov \$4, $cnt
+loop_$m:
+ movzxw (+64*3+256*0)($pSrc), $d0
+ movzxw (+64*3+256*1)($pSrc), $d1
+ shl \$16, $d0
+ shl \$16, $d1
+ mov (+64*2+256*0)($pSrc), $d0#w
+ mov (+64*2+256*1)($pSrc), $d1#w
+ shl \$16, $d0
+ shl \$16, $d1
+ mov (+64*1+256*0)($pSrc), $d0#w
+ mov (+64*1+256*1)($pSrc), $d1#w
+ shl \$16, $d0
+ shl \$16, $d1
+ mov (+64*0+256*0)($pSrc), $d0#w
+ mov (+64*0+256*1)($pSrc), $d1#w
+ mov $d0, (+8*0)($pDst)
+ mov $d1, (+8*1)($pDst)
+ lea 256*2($pSrc), $pSrc
+ lea 8*2($pDst), $pDst
+ sub \$1, $cnt
+ jnz loop_$m
+___
+
+ $m++;
+}
+
+#
+# Data Structures
+#
+
+# Reduce Data
+#
+#
+# Offset Value
+# 0C0 Carries
+# 0B8 X2[10]
+# 0B0 X2[9]
+# 0A8 X2[8]
+# 0A0 X2[7]
+# 098 X2[6]
+# 090 X2[5]
+# 088 X2[4]
+# 080 X2[3]
+# 078 X2[2]
+# 070 X2[1]
+# 068 X2[0]
+# 060 X1[12] P[10]
+# 058 X1[11] P[9] Z[8]
+# 050 X1[10] P[8] Z[7]
+# 048 X1[9] P[7] Z[6]
+# 040 X1[8] P[6] Z[5]
+# 038 X1[7] P[5] Z[4]
+# 030 X1[6] P[4] Z[3]
+# 028 X1[5] P[3] Z[2]
+# 020 X1[4] P[2] Z[1]
+# 018 X1[3] P[1] Z[0]
+# 010 X1[2] P[0] Y[2]
+# 008 X1[1] Q[1] Y[1]
+# 000 X1[0] Q[0] Y[0]
+
+my $X1_offset = 0; # 13 qwords
+my $X2_offset = $X1_offset + 13*8; # 11 qwords
+my $Carries_offset = $X2_offset + 11*8; # 1 qword
+my $Q_offset = 0; # 2 qwords
+my $P_offset = $Q_offset + 2*8; # 11 qwords
+my $Y_offset = 0; # 3 qwords
+my $Z_offset = $Y_offset + 3*8; # 9 qwords
+
+my $Red_Data_Size = $Carries_offset + 1*8; # (25 qwords)
+
+#
+# Stack Frame
+#
+#
+# offset value
+# ... <old stack contents>
+# ...
+# 280 Garray
+
+# 278 tmp16[15]
+# ... ...
+# 200 tmp16[0]
+
+# 1F8 tmp[7]
+# ... ...
+# 1C0 tmp[0]
+
+# 1B8 GT[7]
+# ... ...
+# 180 GT[0]
+
+# 178 Reduce Data
+# ... ...
+# 0B8 Reduce Data
+# 0B0 reserved
+# 0A8 reserved
+# 0A0 reserved
+# 098 reserved
+# 090 reserved
+# 088 reduce result addr
+# 080 exp[8]
+
+# ...
+# 048 exp[1]
+# 040 exp[0]
+
+# 038 reserved
+# 030 loop_idx
+# 028 pg
+# 020 i
+# 018 pData ; arg 4
+# 010 pG ; arg 2
+# 008 pResult ; arg 1
+# 000 rsp ; stack pointer before subtract
+
+my $rsp_offset = 0;
+my $pResult_offset = 8*1 + $rsp_offset;
+my $pG_offset = 8*1 + $pResult_offset;
+my $pData_offset = 8*1 + $pG_offset;
+my $i_offset = 8*1 + $pData_offset;
+my $pg_offset = 8*1 + $i_offset;
+my $loop_idx_offset = 8*1 + $pg_offset;
+my $reserved1_offset = 8*1 + $loop_idx_offset;
+my $exp_offset = 8*1 + $reserved1_offset;
+my $red_result_addr_offset= 8*9 + $exp_offset;
+my $reserved2_offset = 8*1 + $red_result_addr_offset;
+my $Reduce_Data_offset = 8*5 + $reserved2_offset;
+my $GT_offset = $Red_Data_Size + $Reduce_Data_offset;
+my $tmp_offset = 8*8 + $GT_offset;
+my $tmp16_offset = 8*8 + $tmp_offset;
+my $garray_offset = 8*16 + $tmp16_offset;
+my $mem_size = 8*8*32 + $garray_offset;
+
+#
+# Offsets within Reduce Data
+#
+#
+# struct MODF_2FOLD_MONT_512_C1_DATA {
+# UINT64 t[8][8];
+# UINT64 m[8];
+# UINT64 m1[8]; /* 2^768 % m */
+# UINT64 m2[8]; /* 2^640 % m */
+# UINT64 k1[2]; /* (- 1/m) % 2^128 */
+# };
+
+my $T = 0;
+my $M = 512; # = 8 * 8 * 8
+my $M1 = 576; # = 8 * 8 * 9 /* += 8 * 8 */
+my $M2 = 640; # = 8 * 8 * 10 /* += 8 * 8 */
+my $K1 = 704; # = 8 * 8 * 11 /* += 8 * 8 */
+
+#
+# FUNCTIONS
+#
+
+{{{
+#
+# MULADD_128x512 : Function to multiply 128-bits (2 qwords) by 512-bits (8 qwords)
+# and add 512-bits (8 qwords)
+# to get 640 bits (10 qwords)
+# Input: 128-bit mul source: [rdi+8*1], rbp
+# 512-bit mul source: [rsi+8*n]
+# 512-bit add source: r15, r14, ..., r9, r8
+# Output: r9, r8, r15, r14, r13, r12, r11, r10, [rcx+8*1], [rcx+8*0]
+# Clobbers all regs except: rcx, rsi, rdi
+$code.=<<___;
+.type MULADD_128x512,\@abi-omnipotent
+.align 16
+MULADD_128x512:
+___
+ &MULSTEP_512([map("%r$_",(8..15))], "(+8*0)(%rcx)", "%rsi", "%rbp", "%rbx");
+$code.=<<___;
+ mov (+8*1)(%rdi), %rbp
+___
+ &MULSTEP_512([map("%r$_",(9..15,8))], "(+8*1)(%rcx)", "%rsi", "%rbp", "%rbx");
+$code.=<<___;
+ ret
+.size MULADD_128x512,.-MULADD_128x512
+___
+}}}
+
+{{{
+#MULADD_256x512 MACRO pDst, pA, pB, OP, TMP, X7, X6, X5, X4, X3, X2, X1, X0
+#
+# Inputs: pDst: Destination (768 bits, 12 qwords)
+# pA: Multiplicand (1024 bits, 16 qwords)
+# pB: Multiplicand (512 bits, 8 qwords)
+# Dst = Ah * B + Al
+# where Ah is (in qwords) A[15:12] (256 bits) and Al is A[7:0] (512 bits)
+# Results in X3 X2 X1 X0 X7 X6 X5 X4 Dst[3:0]
+# Uses registers: arguments, RAX, RDX
+sub MULADD_256x512
+{
+ my ($pDst, $pA, $pB, $OP, $TMP, $X)=@_;
+$code.=<<___;
+ mov (+8*12)($pA), $OP
+___
+ &MULSTEP_512_ADD($X, "(+8*0)($pDst)", $pB, $pA, $OP, $TMP);
+ push(@$X,shift(@$X));
+
+$code.=<<___;
+ mov (+8*13)($pA), $OP
+___
+ &MULSTEP_512($X, "(+8*1)($pDst)", $pB, $OP, $TMP);
+ push(@$X,shift(@$X));
+
+$code.=<<___;
+ mov (+8*14)($pA), $OP
+___
+ &MULSTEP_512($X, "(+8*2)($pDst)", $pB, $OP, $TMP);
+ push(@$X,shift(@$X));
+
+$code.=<<___;
+ mov (+8*15)($pA), $OP
+___
+ &MULSTEP_512($X, "(+8*3)($pDst)", $pB, $OP, $TMP);
+ push(@$X,shift(@$X));
+}
+
+#
+# mont_reduce(UINT64 *x, /* 1024 bits, 16 qwords */
+# UINT64 *m, /* 512 bits, 8 qwords */
+# MODF_2FOLD_MONT_512_C1_DATA *data,
+# UINT64 *r) /* 512 bits, 8 qwords */
+# Input: x (number to be reduced): tmp16 (Implicit)
+# m (modulus): [pM] (Implicit)
+# data (reduce data): [pData] (Implicit)
+# Output: r (result): Address in [red_res_addr]
+# result also in: r9, r8, r15, r14, r13, r12, r11, r10
+
+my @X=map("%r$_",(8..15));
+
+$code.=<<___;
+.type mont_reduce,\@abi-omnipotent
+.align 16
+mont_reduce:
+___
+
+my $STACK_DEPTH = 8;
+ #
+ # X1 = Xh * M1 + Xl
+$code.=<<___;
+ lea (+$Reduce_Data_offset+$X1_offset+$STACK_DEPTH)(%rsp), %rdi # pX1 (Dst) 769 bits, 13 qwords
+ mov (+$pData_offset+$STACK_DEPTH)(%rsp), %rsi # pM1 (Bsrc) 512 bits, 8 qwords
+ add \$$M1, %rsi
+ lea (+$tmp16_offset+$STACK_DEPTH)(%rsp), %rcx # X (Asrc) 1024 bits, 16 qwords
+
+___
+
+ &MULADD_256x512("%rdi", "%rcx", "%rsi", "%rbp", "%rbx", \@X); # rotates @X 4 times
+ # results in r11, r10, r9, r8, r15, r14, r13, r12, X1[3:0]
+
+$code.=<<___;
+ xor %rax, %rax
+ # X1 += xl
+ add (+8*8)(%rcx), $X[4]
+ adc (+8*9)(%rcx), $X[5]
+ adc (+8*10)(%rcx), $X[6]
+ adc (+8*11)(%rcx), $X[7]
+ adc \$0, %rax
+ # X1 is now rax, r11-r8, r15-r12, tmp16[3:0]
+
+ #
+ # check for carry ;; carry stored in rax
+ mov $X[4], (+8*8)(%rdi) # rdi points to X1
+ mov $X[5], (+8*9)(%rdi)
+ mov $X[6], %rbp
+ mov $X[7], (+8*11)(%rdi)
+
+ mov %rax, (+$Reduce_Data_offset+$Carries_offset+$STACK_DEPTH)(%rsp)
+
+ mov (+8*0)(%rdi), $X[4]
+ mov (+8*1)(%rdi), $X[5]
+ mov (+8*2)(%rdi), $X[6]
+ mov (+8*3)(%rdi), $X[7]
+
+ # X1 is now stored in: X1[11], rbp, X1[9:8], r15-r8
+ # rdi -> X1
+ # rsi -> M1
+
+ #
+ # X2 = Xh * M2 + Xl
+ # do first part (X2 = Xh * M2)
+ add \$8*10, %rdi # rdi -> pXh ; 128 bits, 2 qwords
+ # Xh is actually { [rdi+8*1], rbp }
+ add \$`$M2-$M1`, %rsi # rsi -> M2
+ lea (+$Reduce_Data_offset+$X2_offset+$STACK_DEPTH)(%rsp), %rcx # rcx -> pX2 ; 641 bits, 11 qwords
+___
+ unshift(@X,pop(@X)); unshift(@X,pop(@X));
+$code.=<<___;
+
+ call MULADD_128x512 # args in rcx, rdi / rbp, rsi, r15-r8
+ # result in r9, r8, r15, r14, r13, r12, r11, r10, X2[1:0]
+ mov (+$Reduce_Data_offset+$Carries_offset+$STACK_DEPTH)(%rsp), %rax
+
+ # X2 += Xl
+ add (+8*8-8*10)(%rdi), $X[6] # (-8*10) is to adjust rdi -> Xh to Xl
+ adc (+8*9-8*10)(%rdi), $X[7]
+ mov $X[6], (+8*8)(%rcx)
+ mov $X[7], (+8*9)(%rcx)
+
+ adc %rax, %rax
+ mov %rax, (+$Reduce_Data_offset+$Carries_offset+$STACK_DEPTH)(%rsp)
+
+ lea (+$Reduce_Data_offset+$Q_offset+$STACK_DEPTH)(%rsp), %rdi # rdi -> pQ ; 128 bits, 2 qwords
+ add \$`$K1-$M2`, %rsi # rsi -> pK1 ; 128 bits, 2 qwords
+
+ # MUL_128x128t128 rdi, rcx, rsi ; Q = X2 * K1 (bottom half)
+ # B1:B0 = rsi[1:0] = K1[1:0]
+ # A1:A0 = rcx[1:0] = X2[1:0]
+ # Result = rdi[1],rbp = Q[1],rbp
+ mov (%rsi), %r8 # B0
+ mov (+8*1)(%rsi), %rbx # B1
+
+ mov (%rcx), %rax # A0
+ mul %r8 # B0
+ mov %rax, %rbp
+ mov %rdx, %r9
+
+ mov (+8*1)(%rcx), %rax # A1
+ mul %r8 # B0
+ add %rax, %r9
+
+ mov (%rcx), %rax # A0
+ mul %rbx # B1
+ add %rax, %r9
+
+ mov %r9, (+8*1)(%rdi)
+ # end MUL_128x128t128
+
+ sub \$`$K1-$M`, %rsi
+
+ mov (%rcx), $X[6]
+ mov (+8*1)(%rcx), $X[7] # r9:r8 = X2[1:0]
+
+ call MULADD_128x512 # args in rcx, rdi / rbp, rsi, r15-r8
+ # result in r9, r8, r15, r14, r13, r12, r11, r10, X2[1:0]
+
+ # load first half of m to rdx, rdi, rbx, rax
+ # moved this here for efficiency
+ mov (+8*0)(%rsi), %rax
+ mov (+8*1)(%rsi), %rbx
+ mov (+8*2)(%rsi), %rdi
+ mov (+8*3)(%rsi), %rdx
+
+ # continue with reduction
+ mov (+$Reduce_Data_offset+$Carries_offset+$STACK_DEPTH)(%rsp), %rbp
+
+ add (+8*8)(%rcx), $X[6]
+ adc (+8*9)(%rcx), $X[7]
+
+ #accumulate the final carry to rbp
+ adc %rbp, %rbp
+
+ # Add in overflow corrections: R = (X2>>128) += T[overflow]
+ # R = {r9, r8, r15, r14, ..., r10}
+ shl \$3, %rbp
+ mov (+$pData_offset+$STACK_DEPTH)(%rsp), %rcx # rsi -> Data (and points to T)
+ add %rcx, %rbp # pT ; 512 bits, 8 qwords, spread out
+
+ # rsi will be used to generate a mask after the addition
+ xor %rsi, %rsi
+
+ add (+8*8*0)(%rbp), $X[0]
+ adc (+8*8*1)(%rbp), $X[1]
+ adc (+8*8*2)(%rbp), $X[2]
+ adc (+8*8*3)(%rbp), $X[3]
+ adc (+8*8*4)(%rbp), $X[4]
+ adc (+8*8*5)(%rbp), $X[5]
+ adc (+8*8*6)(%rbp), $X[6]
+ adc (+8*8*7)(%rbp), $X[7]
+
+ # if there is a carry: rsi = 0xFFFFFFFFFFFFFFFF
+ # if carry is clear: rsi = 0x0000000000000000
+ sbb \$0, %rsi
+
+ # if carry is clear, subtract 0. Otherwise, subtract 256 bits of m
+ and %rsi, %rax
+ and %rsi, %rbx
+ and %rsi, %rdi
+ and %rsi, %rdx
+
+ mov \$1, %rbp
+ sub %rax, $X[0]
+ sbb %rbx, $X[1]
+ sbb %rdi, $X[2]
+ sbb %rdx, $X[3]
+
+ # if there is a borrow: rbp = 0
+ # if there is no borrow: rbp = 1
+ # this is used to save the borrows in between the first half and the 2nd half of the subtraction of m
+ sbb \$0, %rbp
+
+ #load second half of m to rdx, rdi, rbx, rax
+
+ add \$$M, %rcx
+ mov (+8*4)(%rcx), %rax
+ mov (+8*5)(%rcx), %rbx
+ mov (+8*6)(%rcx), %rdi
+ mov (+8*7)(%rcx), %rdx
+
+ # use the rsi mask as before
+ # if carry is clear, subtract 0. Otherwise, subtract 256 bits of m
+ and %rsi, %rax
+ and %rsi, %rbx
+ and %rsi, %rdi
+ and %rsi, %rdx
+
+ # if rbp = 0, there was a borrow before, it is moved to the carry flag
+ # if rbp = 1, there was not a borrow before, carry flag is cleared
+ sub \$1, %rbp
+
+ sbb %rax, $X[4]
+ sbb %rbx, $X[5]
+ sbb %rdi, $X[6]
+ sbb %rdx, $X[7]
+
+ # write R back to memory
+
+ mov (+$red_result_addr_offset+$STACK_DEPTH)(%rsp), %rsi
+ mov $X[0], (+8*0)(%rsi)
+ mov $X[1], (+8*1)(%rsi)
+ mov $X[2], (+8*2)(%rsi)
+ mov $X[3], (+8*3)(%rsi)
+ mov $X[4], (+8*4)(%rsi)
+ mov $X[5], (+8*5)(%rsi)
+ mov $X[6], (+8*6)(%rsi)
+ mov $X[7], (+8*7)(%rsi)
+
+ ret
+.size mont_reduce,.-mont_reduce
+___
+}}}
+
+{{{
+#MUL_512x512 MACRO pDst, pA, pB, x7, x6, x5, x4, x3, x2, x1, x0, tmp*2
+#
+# Inputs: pDst: Destination (1024 bits, 16 qwords)
+# pA: Multiplicand (512 bits, 8 qwords)
+# pB: Multiplicand (512 bits, 8 qwords)
+# Uses registers rax, rdx, args
+# B operand in [pB] and also in x7...x0
+sub MUL_512x512
+{
+ my ($pDst, $pA, $pB, $x, $OP, $TMP, $pDst_o)=@_;
+ my ($pDst, $pDst_o) = ($pDst =~ m/([^+]*)\+?(.*)?/);
+ my @X=@$x; # make a copy
+
+$code.=<<___;
+ mov (+8*0)($pA), $OP
+
+ mov $X[0], %rax
+ mul $OP # rdx:rax = %OP * [0]
+ mov %rax, (+$pDst_o+8*0)($pDst)
+ mov %rdx, $X[0]
+___
+for(my $i=1;$i<8;$i++) {
+$code.=<<___;
+ mov $X[$i], %rax
+ mul $OP # rdx:rax = %OP * [$i]
+ add %rax, $X[$i-1]
+ adc \$0, %rdx
+ mov %rdx, $X[$i]
+___
+}
+
+for(my $i=1;$i<8;$i++) {
+$code.=<<___;
+ mov (+8*$i)($pA), $OP
+___
+
+ &MULSTEP_512(\@X, "(+$pDst_o+8*$i)($pDst)", $pB, $OP, $TMP);
+ push(@X,shift(@X));
+}
+
+$code.=<<___;
+ mov $X[0], (+$pDst_o+8*8)($pDst)
+ mov $X[1], (+$pDst_o+8*9)($pDst)
+ mov $X[2], (+$pDst_o+8*10)($pDst)
+ mov $X[3], (+$pDst_o+8*11)($pDst)
+ mov $X[4], (+$pDst_o+8*12)($pDst)
+ mov $X[5], (+$pDst_o+8*13)($pDst)
+ mov $X[6], (+$pDst_o+8*14)($pDst)
+ mov $X[7], (+$pDst_o+8*15)($pDst)
+___
+}
+
+#
+# mont_mul_a3b : subroutine to compute (Src1 * Src2) % M (all 512-bits)
+# Input: src1: Address of source 1: rdi
+# src2: Address of source 2: rsi
+# Output: dst: Address of destination: [red_res_addr]
+# src2 and result also in: r9, r8, r15, r14, r13, r12, r11, r10
+# Temp: Clobbers [tmp16], all registers
+$code.=<<___;
+.type mont_mul_a3b,\@abi-omnipotent
+.align 16
+mont_mul_a3b:
+ #
+ # multiply tmp = src1 * src2
+ # For multiply: dst = rcx, src1 = rdi, src2 = rsi
+ # stack depth is extra 8 from call
+___
+ &MUL_512x512("%rsp+$tmp16_offset+8", "%rdi", "%rsi", [map("%r$_",(10..15,8..9))], "%rbp", "%rbx");
+$code.=<<___;
+ #
+ # Dst = tmp % m
+ # Call reduce(tmp, m, data, dst)
+
+ # tail recursion optimization: jmp to mont_reduce and return from there
+ jmp mont_reduce
+ # call mont_reduce
+ # ret
+.size mont_mul_a3b,.-mont_mul_a3b
+___
+}}}
+
+{{{
+#SQR_512 MACRO pDest, pA, x7, x6, x5, x4, x3, x2, x1, x0, tmp*4
+#
+# Input in memory [pA] and also in x7...x0
+# Uses all argument registers plus rax and rdx
+#
+# This version computes all of the off-diagonal terms into memory,
+# and then it adds in the diagonal terms
+
+sub SQR_512
+{
+ my ($pDst, $pA, $x, $A, $tmp, $x7, $x6, $pDst_o)=@_;
+ my ($pDst, $pDst_o) = ($pDst =~ m/([^+]*)\+?(.*)?/);
+ my @X=@$x; # make a copy
+$code.=<<___;
+ # ------------------
+ # first pass 01...07
+ # ------------------
+ mov $X[0], $A
+
+ mov $X[1],%rax
+ mul $A
+ mov %rax, (+$pDst_o+8*1)($pDst)
+___
+for(my $i=2;$i<8;$i++) {
+$code.=<<___;
+ mov %rdx, $X[$i-2]
+ mov $X[$i],%rax
+ mul $A
+ add %rax, $X[$i-2]
+ adc \$0, %rdx
+___
+}
+$code.=<<___;
+ mov %rdx, $x7
+
+ mov $X[0], (+$pDst_o+8*2)($pDst)
+
+ # ------------------
+ # second pass 12...17
+ # ------------------
+
+ mov (+8*1)($pA), $A
+
+ mov (+8*2)($pA),%rax
+ mul $A
+ add %rax, $X[1]
+ adc \$0, %rdx
+ mov $X[1], (+$pDst_o+8*3)($pDst)
+
+ mov %rdx, $X[0]
+ mov (+8*3)($pA),%rax
+ mul $A
+ add %rax, $X[2]
+ adc \$0, %rdx
+ add $X[0], $X[2]
+ adc \$0, %rdx
+ mov $X[2], (+$pDst_o+8*4)($pDst)
+
+ mov %rdx, $X[0]
+ mov (+8*4)($pA),%rax
+ mul $A
+ add %rax, $X[3]
+ adc \$0, %rdx
+ add $X[0], $X[3]
+ adc \$0, %rdx
+
+ mov %rdx, $X[0]
+ mov (+8*5)($pA),%rax
+ mul $A
+ add %rax, $X[4]
+ adc \$0, %rdx
+ add $X[0], $X[4]
+ adc \$0, %rdx
+
+ mov %rdx, $X[0]
+ mov $X[6],%rax
+ mul $A
+ add %rax, $X[5]
+ adc \$0, %rdx
+ add $X[0], $X[5]
+ adc \$0, %rdx
+
+ mov %rdx, $X[0]
+ mov $X[7],%rax
+ mul $A
+ add %rax, $x7
+ adc \$0, %rdx
+ add $X[0], $x7
+ adc \$0, %rdx
+
+ mov %rdx, $X[1]
+
+ # ------------------
+ # third pass 23...27
+ # ------------------
+ mov (+8*2)($pA), $A
+
+ mov (+8*3)($pA),%rax
+ mul $A
+ add %rax, $X[3]
+ adc \$0, %rdx
+ mov $X[3], (+$pDst_o+8*5)($pDst)
+
+ mov %rdx, $X[0]
+ mov (+8*4)($pA),%rax
+ mul $A
+ add %rax, $X[4]
+ adc \$0, %rdx
+ add $X[0], $X[4]
+ adc \$0, %rdx
+ mov $X[4], (+$pDst_o+8*6)($pDst)
+
+ mov %rdx, $X[0]
+ mov (+8*5)($pA),%rax
+ mul $A
+ add %rax, $X[5]
+ adc \$0, %rdx
+ add $X[0], $X[5]
+ adc \$0, %rdx
+
+ mov %rdx, $X[0]
+ mov $X[6],%rax
+ mul $A
+ add %rax, $x7
+ adc \$0, %rdx
+ add $X[0], $x7
+ adc \$0, %rdx
+
+ mov %rdx, $X[0]
+ mov $X[7],%rax
+ mul $A
+ add %rax, $X[1]
+ adc \$0, %rdx
+ add $X[0], $X[1]
+ adc \$0, %rdx
+
+ mov %rdx, $X[2]
+
+ # ------------------
+ # fourth pass 34...37
+ # ------------------
+
+ mov (+8*3)($pA), $A
+
+ mov (+8*4)($pA),%rax
+ mul $A
+ add %rax, $X[5]
+ adc \$0, %rdx
+ mov $X[5], (+$pDst_o+8*7)($pDst)
+
+ mov %rdx, $X[0]
+ mov (+8*5)($pA),%rax
+ mul $A
+ add %rax, $x7
+ adc \$0, %rdx
+ add $X[0], $x7
+ adc \$0, %rdx
+ mov $x7, (+$pDst_o+8*8)($pDst)
+
+ mov %rdx, $X[0]
+ mov $X[6],%rax
+ mul $A
+ add %rax, $X[1]
+ adc \$0, %rdx
+ add $X[0], $X[1]
+ adc \$0, %rdx
+
+ mov %rdx, $X[0]
+ mov $X[7],%rax
+ mul $A
+ add %rax, $X[2]
+ adc \$0, %rdx
+ add $X[0], $X[2]
+ adc \$0, %rdx
+
+ mov %rdx, $X[5]
+
+ # ------------------
+ # fifth pass 45...47
+ # ------------------
+ mov (+8*4)($pA), $A
+
+ mov (+8*5)($pA),%rax
+ mul $A
+ add %rax, $X[1]
+ adc \$0, %rdx
+ mov $X[1], (+$pDst_o+8*9)($pDst)
+
+ mov %rdx, $X[0]
+ mov $X[6],%rax
+ mul $A
+ add %rax, $X[2]
+ adc \$0, %rdx
+ add $X[0], $X[2]
+ adc \$0, %rdx
+ mov $X[2], (+$pDst_o+8*10)($pDst)
+
+ mov %rdx, $X[0]
+ mov $X[7],%rax
+ mul $A
+ add %rax, $X[5]
+ adc \$0, %rdx
+ add $X[0], $X[5]
+ adc \$0, %rdx
+
+ mov %rdx, $X[1]
+
+ # ------------------
+ # sixth pass 56...57
+ # ------------------
+ mov (+8*5)($pA), $A
+
+ mov $X[6],%rax
+ mul $A
+ add %rax, $X[5]
+ adc \$0, %rdx
+ mov $X[5], (+$pDst_o+8*11)($pDst)
+
+ mov %rdx, $X[0]
+ mov $X[7],%rax
+ mul $A
+ add %rax, $X[1]
+ adc \$0, %rdx
+ add $X[0], $X[1]
+ adc \$0, %rdx
+ mov $X[1], (+$pDst_o+8*12)($pDst)
+
+ mov %rdx, $X[2]
+
+ # ------------------
+ # seventh pass 67
+ # ------------------
+ mov $X[6], $A
+
+ mov $X[7],%rax
+ mul $A
+ add %rax, $X[2]
+ adc \$0, %rdx
+ mov $X[2], (+$pDst_o+8*13)($pDst)
+
+ mov %rdx, (+$pDst_o+8*14)($pDst)
+
+ # start finalize (add in squares, and double off-terms)
+ mov (+$pDst_o+8*1)($pDst), $X[0]
+ mov (+$pDst_o+8*2)($pDst), $X[1]
+ mov (+$pDst_o+8*3)($pDst), $X[2]
+ mov (+$pDst_o+8*4)($pDst), $X[3]
+ mov (+$pDst_o+8*5)($pDst), $X[4]
+ mov (+$pDst_o+8*6)($pDst), $X[5]
+
+ mov (+8*3)($pA), %rax
+ mul %rax
+ mov %rax, $x6
+ mov %rdx, $X[6]
+
+ add $X[0], $X[0]
+ adc $X[1], $X[1]
+ adc $X[2], $X[2]
+ adc $X[3], $X[3]
+ adc $X[4], $X[4]
+ adc $X[5], $X[5]
+ adc \$0, $X[6]
+
+ mov (+8*0)($pA), %rax
+ mul %rax
+ mov %rax, (+$pDst_o+8*0)($pDst)
+ mov %rdx, $A
+
+ mov (+8*1)($pA), %rax
+ mul %rax
+
+ add $A, $X[0]
+ adc %rax, $X[1]
+ adc \$0, %rdx
+
+ mov %rdx, $A
+ mov $X[0], (+$pDst_o+8*1)($pDst)
+ mov $X[1], (+$pDst_o+8*2)($pDst)
+
+ mov (+8*2)($pA), %rax
+ mul %rax
+
+ add $A, $X[2]
+ adc %rax, $X[3]
+ adc \$0, %rdx
+
+ mov %rdx, $A
+
+ mov $X[2], (+$pDst_o+8*3)($pDst)
+ mov $X[3], (+$pDst_o+8*4)($pDst)
+
+ xor $tmp, $tmp
+ add $A, $X[4]
+ adc $x6, $X[5]
+ adc \$0, $tmp
+
+ mov $X[4], (+$pDst_o+8*5)($pDst)
+ mov $X[5], (+$pDst_o+8*6)($pDst)
+
+ # %%tmp has 0/1 in column 7
+ # %%A6 has a full value in column 7
+
+ mov (+$pDst_o+8*7)($pDst), $X[0]
+ mov (+$pDst_o+8*8)($pDst), $X[1]
+ mov (+$pDst_o+8*9)($pDst), $X[2]
+ mov (+$pDst_o+8*10)($pDst), $X[3]
+ mov (+$pDst_o+8*11)($pDst), $X[4]
+ mov (+$pDst_o+8*12)($pDst), $X[5]
+ mov (+$pDst_o+8*13)($pDst), $x6
+ mov (+$pDst_o+8*14)($pDst), $x7
+
+ mov $X[7], %rax
+ mul %rax
+ mov %rax, $X[7]
+ mov %rdx, $A
+
+ add $X[0], $X[0]
+ adc $X[1], $X[1]
+ adc $X[2], $X[2]
+ adc $X[3], $X[3]
+ adc $X[4], $X[4]
+ adc $X[5], $X[5]
+ adc $x6, $x6
+ adc $x7, $x7
+ adc \$0, $A
+
+ add $tmp, $X[0]
+
+ mov (+8*4)($pA), %rax
+ mul %rax
+
+ add $X[6], $X[0]
+ adc %rax, $X[1]
+ adc \$0, %rdx
+
+ mov %rdx, $tmp
+
+ mov $X[0], (+$pDst_o+8*7)($pDst)
+ mov $X[1], (+$pDst_o+8*8)($pDst)
+
+ mov (+8*5)($pA), %rax
+ mul %rax
+
+ add $tmp, $X[2]
+ adc %rax, $X[3]
+ adc \$0, %rdx
+
+ mov %rdx, $tmp
+
+ mov $X[2], (+$pDst_o+8*9)($pDst)
+ mov $X[3], (+$pDst_o+8*10)($pDst)
+
+ mov (+8*6)($pA), %rax
+ mul %rax
+
+ add $tmp, $X[4]
+ adc %rax, $X[5]
+ adc \$0, %rdx
+
+ mov $X[4], (+$pDst_o+8*11)($pDst)
+ mov $X[5], (+$pDst_o+8*12)($pDst)
+
+ add %rdx, $x6
+ adc $X[7], $x7
+ adc \$0, $A
+
+ mov $x6, (+$pDst_o+8*13)($pDst)
+ mov $x7, (+$pDst_o+8*14)($pDst)
+ mov $A, (+$pDst_o+8*15)($pDst)
+___
+}
+
+#
+# sqr_reduce: subroutine to compute Result = reduce(Result * Result)
+#
+# input and result also in: r9, r8, r15, r14, r13, r12, r11, r10
+#
+$code.=<<___;
+.type sqr_reduce,\@abi-omnipotent
+.align 16
+sqr_reduce:
+ mov (+$pResult_offset+8)(%rsp), %rcx
+___
+ &SQR_512("%rsp+$tmp16_offset+8", "%rcx", [map("%r$_",(10..15,8..9))], "%rbx", "%rbp", "%rsi", "%rdi");
+$code.=<<___;
+ # tail recursion optimization: jmp to mont_reduce and return from there
+ jmp mont_reduce
+ # call mont_reduce
+ # ret
+.size sqr_reduce,.-sqr_reduce
+___
+}}}
+
+#
+# MAIN FUNCTION
+#
+
+#mod_exp_512(UINT64 *result, /* 512 bits, 8 qwords */
+# UINT64 *g, /* 512 bits, 8 qwords */
+# UINT64 *exp, /* 512 bits, 8 qwords */
+# struct mod_ctx_512 *data)
+
+# window size = 5
+# table size = 2^5 = 32
+#table_entries equ 32
+#table_size equ table_entries * 8
+$code.=<<___;
+.globl mod_exp_512
+.type mod_exp_512,\@function,4
+mod_exp_512:
+ push %rbp
+ push %rbx
+ push %r12
+ push %r13
+ push %r14
+ push %r15
+
+ # adjust stack down and then align it with cache boundary
+ mov %rsp, %r8
+ sub \$$mem_size, %rsp
+ and \$-64, %rsp
+
+ # store previous stack pointer and arguments
+ mov %r8, (+$rsp_offset)(%rsp)
+ mov %rdi, (+$pResult_offset)(%rsp)
+ mov %rsi, (+$pG_offset)(%rsp)
+ mov %rcx, (+$pData_offset)(%rsp)
+.Lbody:
+ # transform g into montgomery space
+ # GT = reduce(g * C2) = reduce(g * (2^256))
+ # reduce expects to have the input in [tmp16]
+ pxor %xmm4, %xmm4
+ movdqu (+16*0)(%rsi), %xmm0
+ movdqu (+16*1)(%rsi), %xmm1
+ movdqu (+16*2)(%rsi), %xmm2
+ movdqu (+16*3)(%rsi), %xmm3
+ movdqa %xmm4, (+$tmp16_offset+16*0)(%rsp)
+ movdqa %xmm4, (+$tmp16_offset+16*1)(%rsp)
+ movdqa %xmm4, (+$tmp16_offset+16*6)(%rsp)
+ movdqa %xmm4, (+$tmp16_offset+16*7)(%rsp)
+ movdqa %xmm0, (+$tmp16_offset+16*2)(%rsp)
+ movdqa %xmm1, (+$tmp16_offset+16*3)(%rsp)
+ movdqa %xmm2, (+$tmp16_offset+16*4)(%rsp)
+ movdqa %xmm3, (+$tmp16_offset+16*5)(%rsp)
+
+ # load pExp before rdx gets blown away
+ movdqu (+16*0)(%rdx), %xmm0
+ movdqu (+16*1)(%rdx), %xmm1
+ movdqu (+16*2)(%rdx), %xmm2
+ movdqu (+16*3)(%rdx), %xmm3
+
+ lea (+$GT_offset)(%rsp), %rbx
+ mov %rbx, (+$red_result_addr_offset)(%rsp)
+ call mont_reduce
+
+ # Initialize tmp = C
+ lea (+$tmp_offset)(%rsp), %rcx
+ xor %rax, %rax
+ mov %rax, (+8*0)(%rcx)
+ mov %rax, (+8*1)(%rcx)
+ mov %rax, (+8*3)(%rcx)
+ mov %rax, (+8*4)(%rcx)
+ mov %rax, (+8*5)(%rcx)
+ mov %rax, (+8*6)(%rcx)
+ mov %rax, (+8*7)(%rcx)
+ mov %rax, (+$exp_offset+8*8)(%rsp)
+ movq \$1, (+8*2)(%rcx)
+
+ lea (+$garray_offset)(%rsp), %rbp
+ mov %rcx, %rsi # pTmp
+ mov %rbp, %rdi # Garray[][0]
+___
+
+ &swizzle("%rdi", "%rcx", "%rax", "%rbx");
+
+ # for (rax = 31; rax != 0; rax--) {
+ # tmp = reduce(tmp * G)
+ # swizzle(pg, tmp);
+ # pg += 2; }
+$code.=<<___;
+ mov \$31, %rax
+ mov %rax, (+$i_offset)(%rsp)
+ mov %rbp, (+$pg_offset)(%rsp)
+ # rsi -> pTmp
+ mov %rsi, (+$red_result_addr_offset)(%rsp)
+ mov (+8*0)(%rsi), %r10
+ mov (+8*1)(%rsi), %r11
+ mov (+8*2)(%rsi), %r12
+ mov (+8*3)(%rsi), %r13
+ mov (+8*4)(%rsi), %r14
+ mov (+8*5)(%rsi), %r15
+ mov (+8*6)(%rsi), %r8
+ mov (+8*7)(%rsi), %r9
+init_loop:
+ lea (+$GT_offset)(%rsp), %rdi
+ call mont_mul_a3b
+ lea (+$tmp_offset)(%rsp), %rsi
+ mov (+$pg_offset)(%rsp), %rbp
+ add \$2, %rbp
+ mov %rbp, (+$pg_offset)(%rsp)
+ mov %rsi, %rcx # rcx = rsi = addr of tmp
+___
+
+ &swizzle("%rbp", "%rcx", "%rax", "%rbx");
+$code.=<<___;
+ mov (+$i_offset)(%rsp), %rax
+ sub \$1, %rax
+ mov %rax, (+$i_offset)(%rsp)
+ jne init_loop
+
+ #
+ # Copy exponent onto stack
+ movdqa %xmm0, (+$exp_offset+16*0)(%rsp)
+ movdqa %xmm1, (+$exp_offset+16*1)(%rsp)
+ movdqa %xmm2, (+$exp_offset+16*2)(%rsp)
+ movdqa %xmm3, (+$exp_offset+16*3)(%rsp)
+
+
+ #
+ # Do exponentiation
+ # Initialize result to G[exp{511:507}]
+ mov (+$exp_offset+62)(%rsp), %eax
+ mov %rax, %rdx
+ shr \$11, %rax
+ and \$0x07FF, %edx
+ mov %edx, (+$exp_offset+62)(%rsp)
+ lea (+$garray_offset)(%rsp,%rax,2), %rsi
+ mov (+$pResult_offset)(%rsp), %rdx
+___
+
+ &unswizzle("%rdx", "%rsi", "%rbp", "%rbx", "%rax");
+
+ #
+ # Loop variables
+ # rcx = [loop_idx] = index: 510-5 to 0 by 5
+$code.=<<___;
+ movq \$505, (+$loop_idx_offset)(%rsp)
+
+ mov (+$pResult_offset)(%rsp), %rcx
+ mov %rcx, (+$red_result_addr_offset)(%rsp)
+ mov (+8*0)(%rcx), %r10
+ mov (+8*1)(%rcx), %r11
+ mov (+8*2)(%rcx), %r12
+ mov (+8*3)(%rcx), %r13
+ mov (+8*4)(%rcx), %r14
+ mov (+8*5)(%rcx), %r15
+ mov (+8*6)(%rcx), %r8
+ mov (+8*7)(%rcx), %r9
+ jmp sqr_2
+
+main_loop_a3b:
+ call sqr_reduce
+ call sqr_reduce
+ call sqr_reduce
+sqr_2:
+ call sqr_reduce
+ call sqr_reduce
+
+ #
+ # Do multiply, first look up proper value in Garray
+ mov (+$loop_idx_offset)(%rsp), %rcx # bit index
+ mov %rcx, %rax
+ shr \$4, %rax # rax is word pointer
+ mov (+$exp_offset)(%rsp,%rax,2), %edx
+ and \$15, %rcx
+ shrq %cl, %rdx
+ and \$0x1F, %rdx
+
+ lea (+$garray_offset)(%rsp,%rdx,2), %rsi
+ lea (+$tmp_offset)(%rsp), %rdx
+ mov %rdx, %rdi
+___
+
+ &unswizzle("%rdx", "%rsi", "%rbp", "%rbx", "%rax");
+ # rdi = tmp = pG
+
+ #
+ # Call mod_mul_a1(pDst, pSrc1, pSrc2, pM, pData)
+ # result result pG M Data
+$code.=<<___;
+ mov (+$pResult_offset)(%rsp), %rsi
+ call mont_mul_a3b
+
+ #
+ # finish loop
+ mov (+$loop_idx_offset)(%rsp), %rcx
+ sub \$5, %rcx
+ mov %rcx, (+$loop_idx_offset)(%rsp)
+ jge main_loop_a3b
+
+ #
+
+end_main_loop_a3b:
+ # transform result out of Montgomery space
+ # result = reduce(result)
+ mov (+$pResult_offset)(%rsp), %rdx
+ pxor %xmm4, %xmm4
+ movdqu (+16*0)(%rdx), %xmm0
+ movdqu (+16*1)(%rdx), %xmm1
+ movdqu (+16*2)(%rdx), %xmm2
+ movdqu (+16*3)(%rdx), %xmm3
+ movdqa %xmm4, (+$tmp16_offset+16*4)(%rsp)
+ movdqa %xmm4, (+$tmp16_offset+16*5)(%rsp)
+ movdqa %xmm4, (+$tmp16_offset+16*6)(%rsp)
+ movdqa %xmm4, (+$tmp16_offset+16*7)(%rsp)
+ movdqa %xmm0, (+$tmp16_offset+16*0)(%rsp)
+ movdqa %xmm1, (+$tmp16_offset+16*1)(%rsp)
+ movdqa %xmm2, (+$tmp16_offset+16*2)(%rsp)
+ movdqa %xmm3, (+$tmp16_offset+16*3)(%rsp)
+ call mont_reduce
+
+ # If result > m, subract m
+ # load result into r15:r8
+ mov (+$pResult_offset)(%rsp), %rax
+ mov (+8*0)(%rax), %r8
+ mov (+8*1)(%rax), %r9
+ mov (+8*2)(%rax), %r10
+ mov (+8*3)(%rax), %r11
+ mov (+8*4)(%rax), %r12
+ mov (+8*5)(%rax), %r13
+ mov (+8*6)(%rax), %r14
+ mov (+8*7)(%rax), %r15
+
+ # subtract m
+ mov (+$pData_offset)(%rsp), %rbx
+ add \$$M, %rbx
+
+ sub (+8*0)(%rbx), %r8
+ sbb (+8*1)(%rbx), %r9
+ sbb (+8*2)(%rbx), %r10
+ sbb (+8*3)(%rbx), %r11
+ sbb (+8*4)(%rbx), %r12
+ sbb (+8*5)(%rbx), %r13
+ sbb (+8*6)(%rbx), %r14
+ sbb (+8*7)(%rbx), %r15
+
+ # if Carry is clear, replace result with difference
+ mov (+8*0)(%rax), %rsi
+ mov (+8*1)(%rax), %rdi
+ mov (+8*2)(%rax), %rcx
+ mov (+8*3)(%rax), %rdx
+ cmovnc %r8, %rsi
+ cmovnc %r9, %rdi
+ cmovnc %r10, %rcx
+ cmovnc %r11, %rdx
+ mov %rsi, (+8*0)(%rax)
+ mov %rdi, (+8*1)(%rax)
+ mov %rcx, (+8*2)(%rax)
+ mov %rdx, (+8*3)(%rax)
+
+ mov (+8*4)(%rax), %rsi
+ mov (+8*5)(%rax), %rdi
+ mov (+8*6)(%rax), %rcx
+ mov (+8*7)(%rax), %rdx
+ cmovnc %r12, %rsi
+ cmovnc %r13, %rdi
+ cmovnc %r14, %rcx
+ cmovnc %r15, %rdx
+ mov %rsi, (+8*4)(%rax)
+ mov %rdi, (+8*5)(%rax)
+ mov %rcx, (+8*6)(%rax)
+ mov %rdx, (+8*7)(%rax)
+
+ mov (+$rsp_offset)(%rsp), %rsi
+ mov 0(%rsi),%r15
+ mov 8(%rsi),%r14
+ mov 16(%rsi),%r13
+ mov 24(%rsi),%r12
+ mov 32(%rsi),%rbx
+ mov 40(%rsi),%rbp
+ lea 48(%rsi),%rsp
+.Lepilogue:
+ ret
+.size mod_exp_512, . - mod_exp_512
+___
+
+if ($win64) {
+# EXCEPTION_DISPOSITION handler (EXCEPTION_RECORD *rec,ULONG64 frame,
+# CONTEXT *context,DISPATCHER_CONTEXT *disp)
+my $rec="%rcx";
+my $frame="%rdx";
+my $context="%r8";
+my $disp="%r9";
+
+$code.=<<___;
+.extern __imp_RtlVirtualUnwind
+.type mod_exp_512_se_handler,\@abi-omnipotent
+.align 16
+mod_exp_512_se_handler:
+ push %rsi
+ push %rdi
+ push %rbx
+ push %rbp
+ push %r12
+ push %r13
+ push %r14
+ push %r15
+ pushfq
+ sub \$64,%rsp
+
+ mov 120($context),%rax # pull context->Rax
+ mov 248($context),%rbx # pull context->Rip
+
+ lea .Lbody(%rip),%r10
+ cmp %r10,%rbx # context->Rip<prologue label
+ jb .Lin_prologue
+
+ mov 152($context),%rax # pull context->Rsp
+
+ lea .Lepilogue(%rip),%r10
+ cmp %r10,%rbx # context->Rip>=epilogue label
+ jae .Lin_prologue
+
+ mov $rsp_offset(%rax),%rax # pull saved Rsp
+
+ mov 32(%rax),%rbx
+ mov 40(%rax),%rbp
+ mov 24(%rax),%r12
+ mov 16(%rax),%r13
+ mov 8(%rax),%r14
+ mov 0(%rax),%r15
+ lea 48(%rax),%rax
+ mov %rbx,144($context) # restore context->Rbx
+ mov %rbp,160($context) # restore context->Rbp
+ mov %r12,216($context) # restore context->R12
+ mov %r13,224($context) # restore context->R13
+ mov %r14,232($context) # restore context->R14
+ mov %r15,240($context) # restore context->R15
+
+.Lin_prologue:
+ mov 8(%rax),%rdi
+ mov 16(%rax),%rsi
+ mov %rax,152($context) # restore context->Rsp
+ mov %rsi,168($context) # restore context->Rsi
+ mov %rdi,176($context) # restore context->Rdi
+
+ mov 40($disp),%rdi # disp->ContextRecord
+ mov $context,%rsi # context
+ mov \$154,%ecx # sizeof(CONTEXT)
+ .long 0xa548f3fc # cld; rep movsq
+
+ mov $disp,%rsi
+ xor %rcx,%rcx # arg1, UNW_FLAG_NHANDLER
+ mov 8(%rsi),%rdx # arg2, disp->ImageBase
+ mov 0(%rsi),%r8 # arg3, disp->ControlPc
+ mov 16(%rsi),%r9 # arg4, disp->FunctionEntry
+ mov 40(%rsi),%r10 # disp->ContextRecord
+ lea 56(%rsi),%r11 # &disp->HandlerData
+ lea 24(%rsi),%r12 # &disp->EstablisherFrame
+ mov %r10,32(%rsp) # arg5
+ mov %r11,40(%rsp) # arg6
+ mov %r12,48(%rsp) # arg7
+ mov %rcx,56(%rsp) # arg8, (NULL)
+ call *__imp_RtlVirtualUnwind(%rip)
+
+ mov \$1,%eax # ExceptionContinueSearch
+ add \$64,%rsp
+ popfq
+ pop %r15
+ pop %r14
+ pop %r13
+ pop %r12
+ pop %rbp
+ pop %rbx
+ pop %rdi
+ pop %rsi
+ ret
+.size mod_exp_512_se_handler,.-mod_exp_512_se_handler
+
+.section .pdata
+.align 4
+ .rva .LSEH_begin_mod_exp_512
+ .rva .LSEH_end_mod_exp_512
+ .rva .LSEH_info_mod_exp_512
+
+.section .xdata
+.align 8
+.LSEH_info_mod_exp_512:
+ .byte 9,0,0,0
+ .rva mod_exp_512_se_handler
+___
+}
+
+sub reg_part {
+my ($reg,$conv)=@_;
+ if ($reg =~ /%r[0-9]+/) { $reg .= $conv; }
+ elsif ($conv eq "b") { $reg =~ s/%[er]([^x]+)x?/%$1l/; }
+ elsif ($conv eq "w") { $reg =~ s/%[er](.+)/%$1/; }
+ elsif ($conv eq "d") { $reg =~ s/%[er](.+)/%e$1/; }
+ return $reg;
+}
+
+$code =~ s/(%[a-z0-9]+)#([bwd])/reg_part($1,$2)/gem;
+$code =~ s/\`([^\`]*)\`/eval $1/gem;
+$code =~ s/(\(\+[^)]+\))/eval $1/gem;
+print $code;
+close STDOUT;
diff --git a/crypto/engine/Makefile b/crypto/engine/Makefile
index 2ee6c72..d29bdd0 100644
--- a/crypto/engine/Makefile
+++ b/crypto/engine/Makefile
@@ -22,13 +22,13 @@ LIBSRC= eng_err.c eng_lib.c eng_list.c eng_init.c eng_ctrl.c \
tb_rsa.c tb_dsa.c tb_ecdsa.c tb_dh.c tb_ecdh.c tb_rand.c tb_store.c \
tb_cipher.c tb_digest.c tb_pkmeth.c tb_asnmth.c \
eng_openssl.c eng_cnf.c eng_dyn.c eng_cryptodev.c \
- eng_rdrand.c
+ eng_rsax.c eng_rdrand.c
LIBOBJ= eng_err.o eng_lib.o eng_list.o eng_init.o eng_ctrl.o \
eng_table.o eng_pkey.o eng_fat.o eng_all.o \
tb_rsa.o tb_dsa.o tb_ecdsa.o tb_dh.o tb_ecdh.o tb_rand.o tb_store.o \
tb_cipher.o tb_digest.o tb_pkmeth.o tb_asnmth.o \
eng_openssl.o eng_cnf.o eng_dyn.o eng_cryptodev.o \
- eng_rdrand.o
+ eng_rsax.o eng_rdrand.o
SRC= $(LIBSRC)
@@ -265,6 +265,20 @@ eng_rdrand.o: ../../include/openssl/safestack.h ../../include/openssl/sha.h
eng_rdrand.o: ../../include/openssl/stack.h ../../include/openssl/symhacks.h
eng_rdrand.o: ../../include/openssl/x509.h ../../include/openssl/x509_vfy.h
eng_rdrand.o: eng_rdrand.c
+eng_rsax.o: ../../include/openssl/asn1.h ../../include/openssl/bio.h
+eng_rsax.o: ../../include/openssl/bn.h ../../include/openssl/buffer.h
+eng_rsax.o: ../../include/openssl/crypto.h ../../include/openssl/e_os2.h
+eng_rsax.o: ../../include/openssl/ec.h ../../include/openssl/ecdh.h
+eng_rsax.o: ../../include/openssl/ecdsa.h ../../include/openssl/engine.h
+eng_rsax.o: ../../include/openssl/err.h ../../include/openssl/evp.h
+eng_rsax.o: ../../include/openssl/lhash.h ../../include/openssl/obj_mac.h
+eng_rsax.o: ../../include/openssl/objects.h ../../include/openssl/opensslconf.h
+eng_rsax.o: ../../include/openssl/opensslv.h ../../include/openssl/ossl_typ.h
+eng_rsax.o: ../../include/openssl/pkcs7.h ../../include/openssl/rsa.h
+eng_rsax.o: ../../include/openssl/safestack.h ../../include/openssl/sha.h
+eng_rsax.o: ../../include/openssl/stack.h ../../include/openssl/symhacks.h
+eng_rsax.o: ../../include/openssl/x509.h ../../include/openssl/x509_vfy.h
+eng_rsax.o: eng_rsax.c
eng_table.o: ../../e_os.h ../../include/openssl/asn1.h
eng_table.o: ../../include/openssl/bio.h ../../include/openssl/buffer.h
eng_table.o: ../../include/openssl/crypto.h ../../include/openssl/e_os2.h
diff --git a/crypto/engine/eng_all.c b/crypto/engine/eng_all.c
index 195a3a9..7edf12e 100644
--- a/crypto/engine/eng_all.c
+++ b/crypto/engine/eng_all.c
@@ -76,6 +76,9 @@ void ENGINE_load_builtin_engines(void)
#if !defined(OPENSSL_NO_HW) && (defined(__OpenBSD__) || defined(__FreeBSD__) || defined(HAVE_CRYPTODEV))
ENGINE_load_cryptodev();
#endif
+#ifndef OPENSSL_NO_RSAX
+ ENGINE_load_rsax();
+#endif
#ifndef OPENSSL_NO_RDRAND
ENGINE_load_rdrand();
#endif
diff --git a/crypto/engine/eng_rsax.c b/crypto/engine/eng_rsax.c
new file mode 100644
index 0000000..86ee9d8
--- /dev/null
+++ b/crypto/engine/eng_rsax.c
@@ -0,0 +1,701 @@
+/* crypto/engine/eng_rsax.c */
+/* Copyright (c) 2010-2010 Intel Corp.
+ * Author: Vinodh.Gopal at intel.com
+ * Jim Guilford
+ * Erdinc.Ozturk at intel.com
+ * Maxim.Perminov at intel.com
+ * Ying.Huang at intel.com
+ *
+ * More information about algorithm used can be found at:
+ * http://www.cse.buffalo.edu/srds2009/escs2009_submission_Gopal.pdf
+ */
+/* ====================================================================
+ * Copyright (c) 1999-2001 The OpenSSL Project. All rights reserved.
+ *
+ * Redistribution and use in source and binary forms, with or without
+ * modification, are permitted provided that the following conditions
+ * are met:
+ *
+ * 1. Redistributions of source code must retain the above copyright
+ * notice, this list of conditions and the following disclaimer.
+ *
+ * 2. Redistributions in binary form must reproduce the above copyright
+ * notice, this list of conditions and the following disclaimer in
+ * the documentation and/or other materials provided with the
+ * distribution.
+ *
+ * 3. All advertising materials mentioning features or use of this
+ * software must display the following acknowledgment:
+ * "This product includes software developed by the OpenSSL Project
+ * for use in the OpenSSL Toolkit. (http://www.OpenSSL.org/)"
+ *
+ * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
+ * endorse or promote products derived from this software without
+ * prior written permission. For written permission, please contact
+ * licensing at OpenSSL.org.
+ *
+ * 5. Products derived from this software may not be called "OpenSSL"
+ * nor may "OpenSSL" appear in their names without prior written
+ * permission of the OpenSSL Project.
+ *
+ * 6. Redistributions of any form whatsoever must retain the following
+ * acknowledgment:
+ * "This product includes software developed by the OpenSSL Project
+ * for use in the OpenSSL Toolkit (http://www.OpenSSL.org/)"
+ *
+ * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
+ * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
+ * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
+ * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
+ * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
+ * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
+ * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
+ * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
+ * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
+ * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
+ * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
+ * OF THE POSSIBILITY OF SUCH DAMAGE.
+ * ====================================================================
+ *
+ * This product includes cryptographic software written by Eric Young
+ * (eay at cryptsoft.com). This product includes software written by Tim
+ * Hudson (tjh at cryptsoft.com).
+ */
+
+#include <openssl/opensslconf.h>
+
+#include <stdio.h>
+#include <string.h>
+#include <openssl/crypto.h>
+#include <openssl/buffer.h>
+#include <openssl/engine.h>
+#ifndef OPENSSL_NO_RSA
+# include <openssl/rsa.h>
+#endif
+#include <openssl/bn.h>
+#include <openssl/err.h>
+
+/* RSAX is available **ONLY* on x86_64 CPUs */
+#undef COMPILE_RSAX
+
+#if (defined(__x86_64) || defined(__x86_64__) || \
+ defined(_M_AMD64) || defined (_M_X64)) && !defined(OPENSSL_NO_ASM)
+# define COMPILE_RSAX
+static ENGINE *ENGINE_rsax(void);
+#endif
+
+void ENGINE_load_rsax(void)
+{
+/* On non-x86 CPUs it just returns. */
+#ifdef COMPILE_RSAX
+ ENGINE *toadd = ENGINE_rsax();
+ if (!toadd)
+ return;
+ ENGINE_add(toadd);
+ ENGINE_free(toadd);
+ ERR_clear_error();
+#endif
+}
+
+#ifdef COMPILE_RSAX
+# define E_RSAX_LIB_NAME "rsax engine"
+
+static int e_rsax_destroy(ENGINE *e);
+static int e_rsax_init(ENGINE *e);
+static int e_rsax_finish(ENGINE *e);
+static int e_rsax_ctrl(ENGINE *e, int cmd, long i, void *p, void (*f) (void));
+
+# ifndef OPENSSL_NO_RSA
+/* RSA stuff */
+static int e_rsax_rsa_mod_exp(BIGNUM *r, const BIGNUM *I, RSA *rsa,
+ BN_CTX *ctx);
+static int e_rsax_rsa_finish(RSA *r);
+# endif
+
+static const ENGINE_CMD_DEFN e_rsax_cmd_defns[] = {
+ {0, NULL, NULL, 0}
+};
+
+# ifndef OPENSSL_NO_RSA
+/* Our internal RSA_METHOD that we provide pointers to */
+static RSA_METHOD e_rsax_rsa = {
+ "Intel RSA-X method",
+ NULL,
+ NULL,
+ NULL,
+ NULL,
+ e_rsax_rsa_mod_exp,
+ NULL,
+ NULL,
+ e_rsax_rsa_finish,
+ RSA_FLAG_CACHE_PUBLIC | RSA_FLAG_CACHE_PRIVATE,
+ NULL,
+ NULL,
+ NULL
+};
+# endif
+
+/* Constants used when creating the ENGINE */
+static const char *engine_e_rsax_id = "rsax";
+static const char *engine_e_rsax_name = "RSAX engine support";
+
+/* This internal function is used by ENGINE_rsax() */
+static int bind_helper(ENGINE *e)
+{
+# ifndef OPENSSL_NO_RSA
+ const RSA_METHOD *meth1;
+# endif
+ if (!ENGINE_set_id(e, engine_e_rsax_id) ||
+ !ENGINE_set_name(e, engine_e_rsax_name) ||
+# ifndef OPENSSL_NO_RSA
+ !ENGINE_set_RSA(e, &e_rsax_rsa) ||
+# endif
+ !ENGINE_set_destroy_function(e, e_rsax_destroy) ||
+ !ENGINE_set_init_function(e, e_rsax_init) ||
+ !ENGINE_set_finish_function(e, e_rsax_finish) ||
+ !ENGINE_set_ctrl_function(e, e_rsax_ctrl) ||
+ !ENGINE_set_cmd_defns(e, e_rsax_cmd_defns))
+ return 0;
+
+# ifndef OPENSSL_NO_RSA
+ meth1 = RSA_PKCS1_SSLeay();
+ e_rsax_rsa.rsa_pub_enc = meth1->rsa_pub_enc;
+ e_rsax_rsa.rsa_pub_dec = meth1->rsa_pub_dec;
+ e_rsax_rsa.rsa_priv_enc = meth1->rsa_priv_enc;
+ e_rsax_rsa.rsa_priv_dec = meth1->rsa_priv_dec;
+ e_rsax_rsa.bn_mod_exp = meth1->bn_mod_exp;
+# endif
+ return 1;
+}
+
+static ENGINE *ENGINE_rsax(void)
+{
+ ENGINE *ret = ENGINE_new();
+ if (!ret)
+ return NULL;
+ if (!bind_helper(ret)) {
+ ENGINE_free(ret);
+ return NULL;
+ }
+ return ret;
+}
+
+# ifndef OPENSSL_NO_RSA
+/* Used to attach our own key-data to an RSA structure */
+static int rsax_ex_data_idx = -1;
+# endif
+
+static int e_rsax_destroy(ENGINE *e)
+{
+ return 1;
+}
+
+/* (de)initialisation functions. */
+static int e_rsax_init(ENGINE *e)
+{
+# ifndef OPENSSL_NO_RSA
+ if (rsax_ex_data_idx == -1)
+ rsax_ex_data_idx = RSA_get_ex_new_index(0, NULL, NULL, NULL, NULL);
+# endif
+ if (rsax_ex_data_idx == -1)
+ return 0;
+ return 1;
+}
+
+static int e_rsax_finish(ENGINE *e)
+{
+ return 1;
+}
+
+static int e_rsax_ctrl(ENGINE *e, int cmd, long i, void *p, void (*f) (void))
+{
+ int to_return = 1;
+
+ switch (cmd) {
+ /* The command isn't understood by this engine */
+ default:
+ to_return = 0;
+ break;
+ }
+
+ return to_return;
+}
+
+# ifndef OPENSSL_NO_RSA
+
+# ifdef _WIN32
+typedef unsigned __int64 UINT64;
+# else
+typedef unsigned long long UINT64;
+# endif
+typedef unsigned short UINT16;
+
+/*
+ * Table t is interleaved in the following manner: The order in memory is
+ * t[0][0], t[0][1], ..., t[0][7], t[1][0], ... A particular 512-bit value is
+ * stored in t[][index] rather than the more normal t[index][]; i.e. the
+ * qwords of a particular entry in t are not adjacent in memory
+ */
+
+/* Init BIGNUM b from the interleaved UINT64 array */
+static int interleaved_array_to_bn_512(BIGNUM *b, UINT64 *array);
+
+/*
+ * Extract array elements from BIGNUM b To set the whole array from b, call
+ * with n=8
+ */
+static int bn_extract_to_array_512(const BIGNUM *b, unsigned int n,
+ UINT64 *array);
+
+struct mod_ctx_512 {
+ UINT64 t[8][8];
+ UINT64 m[8];
+ UINT64 m1[8]; /* 2^278 % m */
+ UINT64 m2[8]; /* 2^640 % m */
+ UINT64 k1[2]; /* (- 1/m) % 2^128 */
+};
+
+static int mod_exp_pre_compute_data_512(UINT64 *m, struct mod_ctx_512 *data);
+
+void mod_exp_512(UINT64 *result, /* 512 bits, 8 qwords */
+ UINT64 *g, /* 512 bits, 8 qwords */
+ UINT64 *exp, /* 512 bits, 8 qwords */
+ struct mod_ctx_512 *data);
+
+typedef struct st_e_rsax_mod_ctx {
+ UINT64 type;
+ union {
+ struct mod_ctx_512 b512;
+ } ctx;
+
+} E_RSAX_MOD_CTX;
+
+static E_RSAX_MOD_CTX *e_rsax_get_ctx(RSA *rsa, int idx, BIGNUM *m)
+{
+ E_RSAX_MOD_CTX *hptr;
+
+ if (idx < 0 || idx > 2)
+ return NULL;
+
+ hptr = RSA_get_ex_data(rsa, rsax_ex_data_idx);
+ if (!hptr) {
+ hptr = OPENSSL_malloc(3 * sizeof(E_RSAX_MOD_CTX));
+ if (!hptr)
+ return NULL;
+ hptr[2].type = hptr[1].type = hptr[0].type = 0;
+ RSA_set_ex_data(rsa, rsax_ex_data_idx, hptr);
+ }
+
+ if (hptr[idx].type == (UINT64)BN_num_bits(m))
+ return hptr + idx;
+
+ if (BN_num_bits(m) == 512) {
+ UINT64 _m[8];
+ bn_extract_to_array_512(m, 8, _m);
+ memset(&hptr[idx].ctx.b512, 0, sizeof(struct mod_ctx_512));
+ mod_exp_pre_compute_data_512(_m, &hptr[idx].ctx.b512);
+ }
+
+ hptr[idx].type = BN_num_bits(m);
+ return hptr + idx;
+}
+
+static int e_rsax_rsa_finish(RSA *rsa)
+{
+ E_RSAX_MOD_CTX *hptr = RSA_get_ex_data(rsa, rsax_ex_data_idx);
+ if (hptr) {
+ OPENSSL_free(hptr);
+ RSA_set_ex_data(rsa, rsax_ex_data_idx, NULL);
+ }
+ if (rsa->_method_mod_n)
+ BN_MONT_CTX_free(rsa->_method_mod_n);
+ if (rsa->_method_mod_p)
+ BN_MONT_CTX_free(rsa->_method_mod_p);
+ if (rsa->_method_mod_q)
+ BN_MONT_CTX_free(rsa->_method_mod_q);
+ return 1;
+}
+
+static int e_rsax_bn_mod_exp(BIGNUM *r, const BIGNUM *g, const BIGNUM *e,
+ const BIGNUM *m, BN_CTX *ctx,
+ BN_MONT_CTX *in_mont,
+ E_RSAX_MOD_CTX *rsax_mod_ctx)
+{
+ if (rsax_mod_ctx && BN_get_flags(e, BN_FLG_CONSTTIME) != 0) {
+ if (BN_num_bits(m) == 512) {
+ UINT64 _r[8];
+ UINT64 _g[8];
+ UINT64 _e[8];
+
+ /* Init the arrays from the BIGNUMs */
+ bn_extract_to_array_512(g, 8, _g);
+ bn_extract_to_array_512(e, 8, _e);
+
+ mod_exp_512(_r, _g, _e, &rsax_mod_ctx->ctx.b512);
+ /* Return the result in the BIGNUM */
+ interleaved_array_to_bn_512(r, _r);
+ return 1;
+ }
+ }
+
+ return BN_mod_exp_mont(r, g, e, m, ctx, in_mont);
+}
+
+/*
+ * Declares for the Intel CIAP 512-bit / CRT / 1024 bit RSA modular
+ * exponentiation routine precalculations and a structure to hold the
+ * necessary values. These files are meant to live in crypto/rsa/ in the
+ * target openssl.
+ */
+
+/*
+ * Local method: extracts a piece from a BIGNUM, to fit it into
+ * an array. Call with n=8 to extract an entire 512-bit BIGNUM
+ */
+static int bn_extract_to_array_512(const BIGNUM *b, unsigned int n,
+ UINT64 *array)
+{
+ int i;
+ UINT64 tmp;
+ unsigned char bn_buff[64];
+ memset(bn_buff, 0, 64);
+ if (BN_num_bytes(b) > 64) {
+ printf("Can't support this byte size\n");
+ return 0;
+ }
+ if (BN_num_bytes(b) != 0) {
+ if (!BN_bn2bin(b, bn_buff + (64 - BN_num_bytes(b)))) {
+ printf("Error's in bn2bin\n");
+ /* We have to error, here */
+ return 0;
+ }
+ }
+ while (n-- > 0) {
+ array[n] = 0;
+ for (i = 7; i >= 0; i--) {
+ tmp = bn_buff[63 - (n * 8 + i)];
+ array[n] |= tmp << (8 * i);
+ }
+ }
+ return 1;
+}
+
+/* Init a 512-bit BIGNUM from the UINT64*_ (8 * 64) interleaved array */
+static int interleaved_array_to_bn_512(BIGNUM *b, UINT64 *array)
+{
+ unsigned char tmp[64];
+ int n = 8;
+ int i;
+ while (n-- > 0) {
+ for (i = 7; i >= 0; i--) {
+ tmp[63 - (n * 8 + i)] = (unsigned char)(array[n] >> (8 * i));
+ }}
+ BN_bin2bn(tmp, 64, b);
+ return 0;
+}
+
+/* The main 512bit precompute call */
+static int mod_exp_pre_compute_data_512(UINT64 *m, struct mod_ctx_512 *data)
+{
+ BIGNUM two_768, two_640, two_128, two_512, tmp, _m, tmp2;
+
+ /* We need a BN_CTX for the modulo functions */
+ BN_CTX *ctx;
+ /* Some tmps */
+ UINT64 _t[8];
+ int i, j, ret = 0;
+
+ /* Init _m with m */
+ BN_init(&_m);
+ interleaved_array_to_bn_512(&_m, m);
+ memset(_t, 0, 64);
+
+ /* Inits */
+ BN_init(&two_768);
+ BN_init(&two_640);
+ BN_init(&two_128);
+ BN_init(&two_512);
+ BN_init(&tmp);
+ BN_init(&tmp2);
+
+ /* Create our context */
+ if ((ctx = BN_CTX_new()) == NULL) {
+ goto err;
+ }
+ BN_CTX_start(ctx);
+
+ /*
+ * For production, if you care, these only need to be set once,
+ * and may be made constants.
+ */
+ BN_lshift(&two_768, BN_value_one(), 768);
+ BN_lshift(&two_640, BN_value_one(), 640);
+ BN_lshift(&two_128, BN_value_one(), 128);
+ BN_lshift(&two_512, BN_value_one(), 512);
+
+ if (0 == (m[7] & 0x8000000000000000)) {
+ goto err;
+ }
+ if (0 == (m[0] & 0x1)) { /* Odd modulus required for Mont */
+ goto err;
+ }
+
+ /* Precompute m1 */
+ BN_mod(&tmp, &two_768, &_m, ctx);
+ if (!bn_extract_to_array_512(&tmp, 8, &data->m1[0])) {
+ goto err;
+ }
+
+ /* Precompute m2 */
+ BN_mod(&tmp, &two_640, &_m, ctx);
+ if (!bn_extract_to_array_512(&tmp, 8, &data->m2[0])) {
+ goto err;
+ }
+
+ /*
+ * Precompute k1, a 128b number = ((-1)* m-1 ) mod 2128; k1 should
+ * be non-negative.
+ */
+ BN_mod_inverse(&tmp, &_m, &two_128, ctx);
+ if (!BN_is_zero(&tmp)) {
+ BN_sub(&tmp, &two_128, &tmp);
+ }
+ if (!bn_extract_to_array_512(&tmp, 2, &data->k1[0])) {
+ goto err;
+ }
+
+ /* Precompute t */
+ for (i = 0; i < 8; i++) {
+ BN_zero(&tmp);
+ if (i & 1) {
+ BN_add(&tmp, &two_512, &tmp);
+ }
+ if (i & 2) {
+ BN_add(&tmp, &two_512, &tmp);
+ }
+ if (i & 4) {
+ BN_add(&tmp, &two_640, &tmp);
+ }
+
+ BN_nnmod(&tmp2, &tmp, &_m, ctx);
+ if (!bn_extract_to_array_512(&tmp2, 8, _t)) {
+ goto err;
+ }
+ for (j = 0; j < 8; j++)
+ data->t[j][i] = _t[j];
+ }
+
+ /* Precompute m */
+ for (i = 0; i < 8; i++) {
+ data->m[i] = m[i];
+ }
+
+ ret = 1;
+
+ err:
+ /* Cleanup */
+ if (ctx != NULL) {
+ BN_CTX_end(ctx);
+ BN_CTX_free(ctx);
+ }
+ BN_free(&two_768);
+ BN_free(&two_640);
+ BN_free(&two_128);
+ BN_free(&two_512);
+ BN_free(&tmp);
+ BN_free(&tmp2);
+ BN_free(&_m);
+
+ return ret;
+}
+
+static int e_rsax_rsa_mod_exp(BIGNUM *r0, const BIGNUM *I, RSA *rsa,
+ BN_CTX *ctx)
+{
+ BIGNUM *r1, *m1, *vrfy;
+ BIGNUM local_dmp1, local_dmq1, local_c, local_r1;
+ BIGNUM *dmp1, *dmq1, *c, *pr1;
+ int ret = 0;
+
+ BN_CTX_start(ctx);
+ r1 = BN_CTX_get(ctx);
+ m1 = BN_CTX_get(ctx);
+ vrfy = BN_CTX_get(ctx);
+
+ {
+ BIGNUM local_p, local_q;
+ BIGNUM *p = NULL, *q = NULL;
+ int error = 0;
+
+ /*
+ * Make sure BN_mod_inverse in Montgomery intialization uses the
+ * BN_FLG_CONSTTIME flag (unless RSA_FLAG_NO_CONSTTIME is set)
+ */
+ if (!(rsa->flags & RSA_FLAG_NO_CONSTTIME)) {
+ BN_init(&local_p);
+ p = &local_p;
+ BN_with_flags(p, rsa->p, BN_FLG_CONSTTIME);
+
+ BN_init(&local_q);
+ q = &local_q;
+ BN_with_flags(q, rsa->q, BN_FLG_CONSTTIME);
+ } else {
+ p = rsa->p;
+ q = rsa->q;
+ }
+
+ if (rsa->flags & RSA_FLAG_CACHE_PRIVATE) {
+ if (!BN_MONT_CTX_set_locked
+ (&rsa->_method_mod_p, CRYPTO_LOCK_RSA, p, ctx))
+ error = 1;
+ if (!BN_MONT_CTX_set_locked
+ (&rsa->_method_mod_q, CRYPTO_LOCK_RSA, q, ctx))
+ error = 1;
+ }
+
+ /* clean up */
+ if (!(rsa->flags & RSA_FLAG_NO_CONSTTIME)) {
+ BN_free(&local_p);
+ BN_free(&local_q);
+ }
+ if (error)
+ goto err;
+ }
+
+ if (rsa->flags & RSA_FLAG_CACHE_PUBLIC)
+ if (!BN_MONT_CTX_set_locked
+ (&rsa->_method_mod_n, CRYPTO_LOCK_RSA, rsa->n, ctx))
+ goto err;
+
+ /* compute I mod q */
+ if (!(rsa->flags & RSA_FLAG_NO_CONSTTIME)) {
+ c = &local_c;
+ BN_with_flags(c, I, BN_FLG_CONSTTIME);
+ if (!BN_mod(r1, c, rsa->q, ctx))
+ goto err;
+ } else {
+ if (!BN_mod(r1, I, rsa->q, ctx))
+ goto err;
+ }
+
+ /* compute r1^dmq1 mod q */
+ if (!(rsa->flags & RSA_FLAG_NO_CONSTTIME)) {
+ dmq1 = &local_dmq1;
+ BN_with_flags(dmq1, rsa->dmq1, BN_FLG_CONSTTIME);
+ } else
+ dmq1 = rsa->dmq1;
+
+ if (!e_rsax_bn_mod_exp(m1, r1, dmq1, rsa->q, ctx,
+ rsa->_method_mod_q, e_rsax_get_ctx(rsa, 0,
+ rsa->q)))
+ goto err;
+
+ /* compute I mod p */
+ if (!(rsa->flags & RSA_FLAG_NO_CONSTTIME)) {
+ c = &local_c;
+ BN_with_flags(c, I, BN_FLG_CONSTTIME);
+ if (!BN_mod(r1, c, rsa->p, ctx))
+ goto err;
+ } else {
+ if (!BN_mod(r1, I, rsa->p, ctx))
+ goto err;
+ }
+
+ /* compute r1^dmp1 mod p */
+ if (!(rsa->flags & RSA_FLAG_NO_CONSTTIME)) {
+ dmp1 = &local_dmp1;
+ BN_with_flags(dmp1, rsa->dmp1, BN_FLG_CONSTTIME);
+ } else
+ dmp1 = rsa->dmp1;
+
+ if (!e_rsax_bn_mod_exp(r0, r1, dmp1, rsa->p, ctx,
+ rsa->_method_mod_p, e_rsax_get_ctx(rsa, 1,
+ rsa->p)))
+ goto err;
+
+ if (!BN_sub(r0, r0, m1))
+ goto err;
+ /*
+ * This will help stop the size of r0 increasing, which does affect the
+ * multiply if it optimised for a power of 2 size
+ */
+ if (BN_is_negative(r0))
+ if (!BN_add(r0, r0, rsa->p))
+ goto err;
+
+ if (!BN_mul(r1, r0, rsa->iqmp, ctx))
+ goto err;
+
+ /* Turn BN_FLG_CONSTTIME flag on before division operation */
+ if (!(rsa->flags & RSA_FLAG_NO_CONSTTIME)) {
+ pr1 = &local_r1;
+ BN_with_flags(pr1, r1, BN_FLG_CONSTTIME);
+ } else
+ pr1 = r1;
+ if (!BN_mod(r0, pr1, rsa->p, ctx))
+ goto err;
+
+ /*
+ * If p < q it is occasionally possible for the correction of adding 'p'
+ * if r0 is negative above to leave the result still negative. This can
+ * break the private key operations: the following second correction
+ * should *always* correct this rare occurrence. This will *never* happen
+ * with OpenSSL generated keys because they ensure p > q [steve]
+ */
+ if (BN_is_negative(r0))
+ if (!BN_add(r0, r0, rsa->p))
+ goto err;
+ if (!BN_mul(r1, r0, rsa->q, ctx))
+ goto err;
+ if (!BN_add(r0, r1, m1))
+ goto err;
+
+ if (rsa->e && rsa->n) {
+ if (!e_rsax_bn_mod_exp
+ (vrfy, r0, rsa->e, rsa->n, ctx, rsa->_method_mod_n,
+ e_rsax_get_ctx(rsa, 2, rsa->n)))
+ goto err;
+
+ /*
+ * If 'I' was greater than (or equal to) rsa->n, the operation will
+ * be equivalent to using 'I mod n'. However, the result of the
+ * verify will *always* be less than 'n' so we don't check for
+ * absolute equality, just congruency.
+ */
+ if (!BN_sub(vrfy, vrfy, I))
+ goto err;
+ if (!BN_mod(vrfy, vrfy, rsa->n, ctx))
+ goto err;
+ if (BN_is_negative(vrfy))
+ if (!BN_add(vrfy, vrfy, rsa->n))
+ goto err;
+ if (!BN_is_zero(vrfy)) {
+ /*
+ * 'I' and 'vrfy' aren't congruent mod n. Don't leak
+ * miscalculated CRT output, just do a raw (slower) mod_exp and
+ * return that instead.
+ */
+
+ BIGNUM local_d;
+ BIGNUM *d = NULL;
+
+ if (!(rsa->flags & RSA_FLAG_NO_CONSTTIME)) {
+ d = &local_d;
+ BN_with_flags(d, rsa->d, BN_FLG_CONSTTIME);
+ } else
+ d = rsa->d;
+ if (!e_rsax_bn_mod_exp(r0, I, d, rsa->n, ctx,
+ rsa->_method_mod_n, e_rsax_get_ctx(rsa, 2,
+ rsa->n)))
+ goto err;
+ }
+ }
+ ret = 1;
+
+ err:
+ BN_CTX_end(ctx);
+
+ return ret;
+}
+# endif /* !OPENSSL_NO_RSA */
+#endif /* !COMPILE_RSAX */
More information about the openssl-commits
mailing list