[openssl-commits] [openssl] master update

Kurt Roeckx kurt at openssl.org
Thu Jul 26 04:27:38 UTC 2018


The branch master has been updated
       via  feac7a1c8be49fbcb76fcb721ec9f02fdd91030e (commit)
       via  74ee379651fb2bb12c6f7eb9fa10e70be89ac7c8 (commit)
      from  7c226dfc434dcd0c8a3240df166b7561a8b51b0f (commit)


- Log -----------------------------------------------------------------
commit feac7a1c8be49fbcb76fcb721ec9f02fdd91030e
Author: Kurt Roeckx <kurt at roeckx.be>
Date:   Wed Jul 25 18:55:16 2018 +0200

    Make number of Miller-Rabin tests for a prime tests depend on the security level of the prime
    
    The old numbers where all generated for an 80 bit security level. But
    the number should depend on security level you want to reach. For bigger
    primes we want a higher security level and so need to do more tests.
    
    Reviewed-by: Richard Levitte <levitte at openssl.org>
    Reviewed-by: Matthias St. Pierre <Matthias.St.Pierre at ncp-e.com>
    Reviewed-by: Paul Dale <paul.dale at oracle.com>
    GH: #6075
    Fixes: #6012

commit 74ee379651fb2bb12c6f7eb9fa10e70be89ac7c8
Author: Kurt Roeckx <kurt at roeckx.be>
Date:   Wed Apr 25 21:47:20 2018 +0200

    Change the number of Miller-Rabin test for DSA generation to 64
    
    This changes the security level from 100 to 128 bit.
    We only have 1 define, this sets it to the highest level supported for
    DSA, and needed for keys larger than 3072 bit.
    
    Reviewed-by: Richard Levitte <levitte at openssl.org>
    Reviewed-by: Matthias St. Pierre <Matthias.St.Pierre at ncp-e.com>
    Reviewed-by: Paul Dale <paul.dale at oracle.com>
    GH: #6075

-----------------------------------------------------------------------

Summary of changes:
 CHANGES                        | 10 +++++
 doc/man3/BN_generate_prime.pod | 12 +++++-
 include/openssl/bn.h           | 87 +++++++++++++++++++++++++++++++++---------
 include/openssl/dsa.h          |  8 ++--
 4 files changed, 95 insertions(+), 22 deletions(-)

diff --git a/CHANGES b/CHANGES
index 3cf312a..cab58c0 100644
--- a/CHANGES
+++ b/CHANGES
@@ -9,6 +9,16 @@
 
  Changes between 1.1.0h and 1.1.1 [xx XXX xxxx]
 
+  *) Change generating and checking of primes so that the error rate of not
+     being prime depends on the intended use based on the size of the input.
+     For larger primes this will result in more rounds of Miller-Rabin.
+     The maximal error rate for primes with more than 1080 bits is lowered
+     to 2^-128.
+     [Kurt Roeckx, Annie Yousar]
+
+  *) Increase the number of Miller-Rabin rounds for DSA key generating to 64.
+     [Kurt Roeckx]
+
   *) The 'tsget' script is renamed to 'tsget.pl', to avoid confusion when
      moving between systems, and to avoid confusion when a Windows build is
      done with mingw vs with MSVC.  For POSIX installs, there's still a
diff --git a/doc/man3/BN_generate_prime.pod b/doc/man3/BN_generate_prime.pod
index f833d5c..4b085e7 100644
--- a/doc/man3/BN_generate_prime.pod
+++ b/doc/man3/BN_generate_prime.pod
@@ -101,7 +101,17 @@ If B<do_trial_division == 0>, this test is skipped.
 Both BN_is_prime_ex() and BN_is_prime_fasttest_ex() perform a Miller-Rabin
 probabilistic primality test with B<nchecks> iterations. If
 B<nchecks == BN_prime_checks>, a number of iterations is used that
-yields a false positive rate of at most 2^-80 for random input.
+yields a false positive rate of at most 2^-64 for random input.
+The error rate depends on the size of the prime and goes down for bigger primes.
+The rate is 2^-80 starting at 308 bits, 2^-112 at 852 bit, 2^-128 at 1080 bits,
+2^-192 at 3747 bit and 2^-256 at 6394 bit.
+
+When the source of the prime is not random or not trusted, the number
+of checks needs to be much higher to reach the same level of assurance:
+It should equal half of the targeted security level in bits (rounded up to the
+next integer if necessary).
+For instance, to reach the 128 bit security level, B<nchecks> should be set to
+64.
 
 If B<cb> is not B<NULL>, B<BN_GENCB_call(cb, 1, j)> is called
 after the j-th iteration (j = 0, 1, ...). B<ctx> is a
diff --git a/include/openssl/bn.h b/include/openssl/bn.h
index 4678bb0..8af05d0 100644
--- a/include/openssl/bn.h
+++ b/include/openssl/bn.h
@@ -107,25 +107,76 @@ void *BN_GENCB_get_arg(BN_GENCB *cb);
                                  * on the size of the number */
 
 /*
- * number of Miller-Rabin iterations for an error rate of less than 2^-80 for
- * random 'b'-bit input, b >= 100 (taken from table 4.4 in the Handbook of
- * Applied Cryptography [Menezes, van Oorschot, Vanstone; CRC Press 1996];
- * original paper: Damgaard, Landrock, Pomerance: Average case error
- * estimates for the strong probable prime test. -- Math. Comp. 61 (1993)
- * 177-194)
+ * BN_prime_checks_for_size() returns the number of Miller-Rabin iterations
+ * that will be done for checking that a random number is probably prime. The
+ * error rate for accepting a composite number as prime depends on the size of
+ * the prime |b|. The error rates used are for calculating an RSA key with 2 primes,
+ * and so the level is what you would expect for a key of double the size of the
+ * prime.
+ *
+ * This table is generated using the algorithm of FIPS PUB 186-4
+ * Digital Signature Standard (DSS), section F.1, page 117.
+ * (https://dx.doi.org/10.6028/NIST.FIPS.186-4)
+ *
+ * The following magma script was used to generate the output:
+ * securitybits:=125;
+ * k:=1024;
+ * for t:=1 to 65 do
+ *   for M:=3 to Floor(2*Sqrt(k-1)-1) do
+ *     S:=0;
+ *     // Sum over m
+ *     for m:=3 to M do
+ *       s:=0;
+ *       // Sum over j
+ *       for j:=2 to m do
+ *         s+:=(RealField(32)!2)^-(j+(k-1)/j);
+ *       end for;
+ *       S+:=2^(m-(m-1)*t)*s;
+ *     end for;
+ *     A:=2^(k-2-M*t);
+ *     B:=8*(Pi(RealField(32))^2-6)/3*2^(k-2)*S;
+ *     pkt:=2.00743*Log(2)*k*2^-k*(A+B);
+ *     seclevel:=Floor(-Log(2,pkt));
+ *     if seclevel ge securitybits then
+ *       printf "k: %5o, security: %o bits  (t: %o, M: %o)\n",k,seclevel,t,M;
+ *       break;
+ *     end if;
+ *   end for;
+ *   if seclevel ge securitybits then break; end if;
+ * end for;
+ *
+ * It can be run online at:
+ * http://magma.maths.usyd.edu.au/calc
+ *
+ * And will output:
+ * k:  1024, security: 129 bits  (t: 6, M: 23)
+ *
+ * k is the number of bits of the prime, securitybits is the level we want to
+ * reach.
+ *
+ * prime length | RSA key size | # MR tests | security level
+ * -------------+--------------|------------+---------------
+ *  (b) >= 6394 |     >= 12788 |          3 |        256 bit
+ *  (b) >= 3747 |     >=  7494 |          3 |        192 bit
+ *  (b) >= 1345 |     >=  2690 |          4 |        128 bit
+ *  (b) >= 1080 |     >=  2160 |          5 |        128 bit
+ *  (b) >=  852 |     >=  1704 |          5 |        112 bit
+ *  (b) >=  476 |     >=   952 |          5 |         80 bit
+ *  (b) >=  400 |     >=   800 |          6 |         80 bit
+ *  (b) >=  347 |     >=   694 |          7 |         80 bit
+ *  (b) >=  308 |     >=   616 |          8 |         80 bit
+ *  (b) >=   55 |     >=   110 |         27 |         64 bit
+ *  (b) >=    6 |     >=    12 |         34 |         64 bit
  */
-# define BN_prime_checks_for_size(b) ((b) >= 1300 ?  2 : \
-                                (b) >=  850 ?  3 : \
-                                (b) >=  650 ?  4 : \
-                                (b) >=  550 ?  5 : \
-                                (b) >=  450 ?  6 : \
-                                (b) >=  400 ?  7 : \
-                                (b) >=  350 ?  8 : \
-                                (b) >=  300 ?  9 : \
-                                (b) >=  250 ? 12 : \
-                                (b) >=  200 ? 15 : \
-                                (b) >=  150 ? 18 : \
-                                /* b >= 100 */ 27)
+
+# define BN_prime_checks_for_size(b) ((b) >= 3747 ?  3 : \
+                                (b) >=  1345 ?  4 : \
+                                (b) >=  476 ?  5 : \
+                                (b) >=  400 ?  6 : \
+                                (b) >=  347 ?  7 : \
+                                (b) >=  308 ?  8 : \
+                                (b) >=  55  ? 27 : \
+                                /* b >= 6 */ 34)
 
 # define BN_num_bytes(a) ((BN_num_bits(a)+7)/8)
 
diff --git a/include/openssl/dsa.h b/include/openssl/dsa.h
index f347f71..822eff3 100644
--- a/include/openssl/dsa.h
+++ b/include/openssl/dsa.h
@@ -141,10 +141,12 @@ int DSAparams_print_fp(FILE *fp, const DSA *x);
 int DSA_print_fp(FILE *bp, const DSA *x, int off);
 # endif
 
-# define DSS_prime_checks 50
+# define DSS_prime_checks 64
 /*
- * Primality test according to FIPS PUB 186[-1], Appendix 2.1: 50 rounds of
- * Rabin-Miller
+ * Primality test according to FIPS PUB 186-4, Appendix C.3. Since we only
+ * have one value here we set the number of checks to 64 which is the 128 bit
+ * security level that is the highest level and valid for creating a 3072 bit
+ * DSA key.
  */
 # define DSA_is_prime(n, callback, cb_arg) \
         BN_is_prime(n, DSS_prime_checks, callback, NULL, cb_arg)


More information about the openssl-commits mailing list